REACTIONS OF AMMONIA WITH SOIL, III SORPTION OF AQUEOUS NH₃ BY HOMOIONIC SOIL CLAYS J. ASHWORTH and M. A. F. PYMAN1 (Rothamsted Experimental Station, Harpenden, Herts, AL5 2JO) ### Summary Homoionic clay suspensions were equilibrated at 25°C with aqueous NH₃ (0.01 to 0.30 M) by agitating for several days. Using clays extracted from three different soils, sorption of NH₃, measured by titration, followed the order Na > Ca > NH₄-clay. The difference in NH₃ sorption between Na-clay and NH₄-clay was matched by an increase in Na⁺ ion concentration in the aqueous phase of suspensions of Na-clay treated with NH₃, but there was no such effect with Ca-clay. Sorption of NH₃ on NH₄-clay in aqueous suspension is considered due to proton donation at sites of pH-dependent charge, and the additional sorption on Na-clay to displacement of Na⁺ by NH₄⁺ ions. The additional sorption on Ca-clay seems largely due to co-ordination of Ca²⁺ ions with molecular NH₃. Exchangeable cations affect NH₃ sorption differently when an aqueous phase is present than when dried homoionic materials are treated with NH₃ gas. #### Introduction LARGE-SCALE use of ammonia as a fertiliser began in the 1930s when it was added to irrigation water in Californian orchards. Jenny *et al.* (1945) studied sorption of aqueous NH₃ on Californian soils, and the availability of sorbed NH₃ to plants and nitrifying bacteria. Since the 1950s, most NH₃ has been injected into soil in bands, either as aqueous or, especially in the U.S.A., as anhydrous NH₃. Almost all subsequent research (see McVickar et al., 1966, for reviews) has involved using NH₃ gas and dried soil or clay. However, studies involving an aqueous phase have an obvious relevance to practical agriculture, and the various mechanisms proposed for NH₃ sorption on dried materials might have different relative importance under aqueous conditions. Various workers, using dried homoionic soils and clays, have studied the effects on NH₃ sorption of altering the exchangeable cation. Some (Mortland et al., 1963; James and Harward, 1964; Russell, 1965; Mortland, 1968) have emphasised the importance of sorption mechanisms actually involving exchangeable cations; previous papers in this series (Ashworth, 1973 and 1978) have drawn attention to the contribution to overall sorption due to reaction of NH₃ at sites of pH-dependent charge. To establish the importance of exchangeable cations in determining sorption of NH₃ from aqueous solution, NH₄-clay was used as a standard of comparison with other forms of clay. Although, in presence of an aqueous phase, NH₃ can be sorbed through displacement of resident cations into solution by NH₄⁺ ions, no net sorption via this mechanism can occur on homoionic NH₄-clay. Also, although Journal of Soil Science, 1978, Prager Jet Present address: University of Western Australia, Nedlands, W.A., 6009. #### J. ASHWORTH AND M. A. F. PYMAN exchangeable cations also co-ordinate directly with NH₃, this is unlike the case of NH₄ ions. Ammoniates of ionic salts are most stable when the cation is small or highly charged (Jolly, 1964). However, Bjerrum (1941) showed that, in dilute aqueous NH $_3$ (<0.5 M), even Mg $^{2+}$ ions have little tendency to be co-ordinated by NH $_3$: Ca $^{2+}$ and Li $^+$ ions even less, and Ba $^{2+}$ and K $^+$ ions none at all. This, and the similarity in size of K $^+$ and NH $^+_4$ ions, indicate that little NH $_3$ will be co-ordinated with exchangeable Ca $^{2+}$ ions, and less, if any, with Na $^+$ or NH $^+_4$ ions on clay suspensions in dilute aqueous NH $_3$. It was known from previous work that exchangeable Na^+ ions can contribute to aqueous $\mathrm{NH_3}$ sorption, because sorption was substantially more on Na^- than on Ca -bentonite at a given equilibrium $\mathrm{NH_3}$ concentration (Ashworth, 1972). In the work described here, Na^- and Ca -clays were used in order to repeat this comparison using soil clays. ## Experimental Various difficulties were met in preliminary attempts to estimate sorption from the fall in concentration of NH_3 in solutions added to clays. To obtain reproducible sorption isotherms it was found necessary to agitate the mixture for 2 to 3 days and especially to use small ratios of clay:solution. The change in NH_3 concentration was therefore small and its measurement was not reproducible with very satisfactory precision, even allowing for errors in titration. Errors caused by evaporation of NH_3 after centrifuging the equilibrated mixture were largely avoided by acidifying portions of the supernatant solution and back-titrating with standard alkali, instead of titrating directly with standard acid. Suspensions in aqueous NH_3 (0.02 M) of soils with more than 2 per cent C gave yellow, cloudy supernatant solutions on centrifuging and considerable pH buffering was observed during back-titration. Soils with less than 1 per cent C gave clear, colourless, unbuffered supernatant solutions. Pre-treatment of soil with H_2O_2 to remove organic carbon was avoided after it was found in preparative work (Ashworth, 1971) that this made it very difficult to obtain completely saturated, homoionic Na-soil. #### Materials and methods Batcombe soil was obtained from the plot receiving no fertiliser in the long-term wheat experiment on Broadbalk field, Rothamsted: Bromyard and Speller soils from sub-surface horizons (all soils had less than 1 per cent C). The clay fractions were separated by standard sedimentation methods and Na-saturated suspensions prepared as described by Deist (1966). Portions were re-saturated with NH₄ or Ca²⁺ ions by repeated treatment with NH₄OAc or CaCl₂ solution. All the suspensions were washed salt-free with water and the clays recovered by washing with ethanol, then petroleum ether. The air-dried materials were stored at room temperature (22 ± 2 °C) in equilibrium with saturated Mg(NO₃)₂ solution (relative humidity = 0.55). Cation exchange capacities (CEC) were measured by leaching with NH₄OAc solution (1 M) and analysing the leachate spectrophotometrically for Na⁺ or Ca²⁺. NH₄⁺ was measured by titrating NH₃ evolved on alkaline steam distillation of a portion of clay. Surface areas were measured by the ethylene glycol method of #### SORPTION OF AQUEOUS AMMONIA TABLE 1 Froperties of parent soils and their clay fractions | | Soil
scries | clay
% | mineralogy | carbon* | Clay fraction | | | |-----------------|----------------|-----------|-----------------------|---------|-----------------------------|-----------------------|--| | ·*/ - a-augente | | | | | CEC (meq kg ⁻¹) | Surface area (m² g-1) | | | | Batcombe | 24 | mainly | 0.00 | NH_ 320 | 282 | | | | | | expanding
minerals | 0.80 | Na 330 ·
Ca 420 | 285
369 | | | | | | contains | | NH ₂ 260 | 202 | | | | Bromyard | 45 | moderate
chlorite | 0.40 | Na 270
Ca 300 | 220
283 | | | | | | contains | | NH ₂ 210 | 243 | | | | Speller - | 58 | mainly
illite | 0.83 | Na 230
Ca 250 | 220
303 | | ^{*}Tinsley method. Rawson (1969). These data and some properties of the parent soils are collected in Table 1. Thorough equilibration of clays with aqueous NH₃ was achieved as follows: clay samples (0.5 g) and water (20 cm³) were magnetically stirred (500 r.p.m.) for 24 h at 25 °C in flasks closed with greased ground glass stoppers, to ensure thorough dispersion of the clay particles. Aqueous NH₃ (0.05–1.5 M, 5 cm³) was added and stirring continued for a further 3 days at 25 °C. The suspensions were then pipetted into two centrifuge tubes (15 cm³ capacity) and centrifuged at 25 °C (18 000 r.p.m., 30 min). To measure sorption, two portions of the supernatant solution (5 cm³) were pipetted into a known excess of HCl (5 cm³), then back-titrated directly with standard NaOH, monitoring pH by glass electrode. Another two acidified portions were back-titrated-after alkaline steam-distillation into the same known excess of HCl. In all titrations, the burette was 'read at the pH (ca. 5.3) corresponding to that calculated for a solution of NH₄Cl of appropriate concentration. Buffering action due to dissolving CO₂ was apparent near pH 6 but did not affect the measurements. 'Control' suspensions of clays treated with water, and samples of aqueous NH₃, underwent the whole procedure and were titrated similarly. In similar experiments, the change in Na⁺ or Ca²⁺ ion concentration in the supernatant solution, relative to the value in suspensions of the appropriate clay in water, was measured spectrophotometrically. Sorption of aqueous NH_3 by silica gel (Fisons, for chromatography) was measured for the purpose of comparison with the results obtained with clays. Equilibration was rapid and the amount of NH_3 sorbed was unaffected by the SiO_2 -gel:solution ratio. Integral heats of reaction between aqueous NH₃ and Na⁺ and Ca²⁺-saturated Batcombe clay were measured in a batch microcalorimeter (LKB type 10700), as described by Hayes *et al.* (1972). Clay suspensions (4 cm³, 20 g clay/I) and aqueous NH₃ (2 cm³, 0.002–0.02 M) in divided compartments of one cell of the instrument, and matching quantities of suspension and water in the twin cell were first brought to 25 °C. The amount of NH₃ sorbed after 30 min. in matching experi- ## J. ASHWORTH AND M. A. F. PYMAN ments in stoppered tubes was measured after centrifuging, by tit is we supernatant solution as already described. In these experiments, clay and NH₃ did not reach equilibrium. #### Results and discussion The NH₃ sorption isotherms (Figs. 1a, b and c) were calculated from the amounts of NH₃ in supernatant solutions and in 'control' solutions of NH₃, as # SORPTION OF AQUEOUS AMMONIA indicated by the contrations obtained after steam distillation (typical results are in Table 2). Amounts of NH₃ sorbed (A), at any equilibrium NH₃ concentration [NH₃]_{eq}, follow the order Na > Ca > NH₄-clay with all three clays. Replication of data is generally poor, but perhaps less so for Na-clays, suggesting that clay dispersion was still incomplete. Despite the error involved (we estimate ± 15 per cent of A), the differences between the curves for Na-, Ca- and NH₄-clays are consistently greater than this, suggesting that NH₃ reacts with Na⁺ and Ca²⁺ ions. The observed increase in sodium ion concentration (δNa^+) in the aqueous phase of Na-clay suspensions treated with NH3 is approximately equivalent to half the CEC (Fig. 2). With Na-soil, there was a difference (B) between back-titres obtained after steam distilling the supernatant solution, and after adding it directly to excess HCl. Values of B were small and carry the accumulated errors of two titrations (results in Table 2 have not been rounded, because then B would also carry rounding errors). Values of δNa^+ are also subject to two sets of errors in determination. With due allowance for these errors, a trend towards equivalence between these parameters can be seen (Fig. 3) which is consistent with the sorption mechanism: $$Na-clay + NH_3 + H_2O \longrightarrow NH_4-clay + Na^+ + OH^-$$ (1) since hydroxyl ions are not volatile and therefore affect only the direct back-titration. With all three clays, values of $\delta \mathrm{Na}^+$ correspond to the difference in $\mathrm{NH_3}$ sorption between Na-clay and $\mathrm{NH_4}$ -clay (ca. 125 meg/kg clay over most of the FIG. 1. Amounts of NH₃ sorbed (A) on clays at equilibrium with aqueous NH₃ of concentration [NH₃]_{eq}: (a) Batcombe, (b) Bromyard, (c) Speller clay; & Na-form, Ca-form, NH₄-form. #### J. ASHWORTH AND M. A. F. PYMAN # TABLE 2 Results of treating Speller clay with 0.01 M NH3 | | Mean back-titres | | | , 100 | | | |---------------------|------------------|------------------------------|--|--|---|-----| | Homoionic
cation | v 1 * | u ₂ **
0.005 M | V3*** | $= 50 (v_1 - v_1) $ $= 60 (m_1 - m_2)$ | $ \begin{array}{r} B \\ = 50 \left(v_2 - v_3 \right) \\ kg \ clay \end{array} $ | δNa | | Na | | 11.22 | 9.26 | 144 | 98 | 110 | | Ca | 8.35 | 10.86 | 10.84 | 125 | 1 | _ | | NH_ | | 9.52 | and the same of th | 59 | - | - | ^{*5} cm3 control NH, solution steam distilled into HCl. range of NH_3 concentrations employed). The ion-exchange reaction shown in Equation (1) accounts satisfactorily for the extra NH_3 sorption on Na-clays; this supports the view (see Introduction) that direct co-ordination to Na^+ is insignificant in dilute NH_3 . With Ca- and NH₄-clays, the quantity B was always near zero, and NH₃ treatment caused little change in Ca²⁺ ion concentration in the aqueous phase of Ca-clays. A substantial part of the extra NH₃ sorption on Ca-clays, relative to that on NH₄-clay (ca. 65 mmol per kg clay over most of the range) is probably due to co-ordination of Ca²⁺ ions with NH₃. In CaCl₂ solution 10 per cent of the Ca²⁺ ions are co-ordinated with a molecule of NH₃, in 0.2 M aqueous NH₃ (Bjerrum, 1941). FIG. 2. Change in sodium ion concentration (δ Na*) in aqueous phase of clay suspensions equilibrated with aqueous NH₃ \oplus Batcombe, + Bromyard, \times Speller clay. FIG. 3. Correlation between δNa* and the amount of hydroxyl ion released (B) after equilibration; legend as for Fig. 2. If exchangeable Ca²⁺ ions on clay suspensions at equilibrium with 0.2 M NH₃ behaved similarly, co-ordination would account for only 20 mmol NH₃ per kg clay; however, co-ordination complexes involving ions held at fixed sites may be more stable than those with ions free in solution. $Ca(OH)_2$ is too soluble for Ca^{2+} ions in the aqueous phase to be precipitated as the hydroxide, even at high pH. Therefore, the reaction: $$Ca-clay + 2NH_3 + 2H_2O \implies (NH_4)_2 - clay + Ca(OH)_2$$ (2) could contribute to $\mathrm{NH_3}$ sorption only on the assumption that any $\mathrm{Ca(OH)_2}$ formed remained trapped at the site of reaction, since no increase in $\mathrm{Ca^{2+}}$ ion concentration in the aqueous phase was detected. However, Mortland and Raman (1968) found that sorption of $\mathrm{NH_3}$ vapour by means of reaction (2) was extremely sensitive to the degree of hydration of $\mathrm{Ca\text{-}clay}$ films, falling from 800 to 160 mmol/kg bentonite as relative humidity rose from 0.20 to 0.98. The contribution to sorption from this mechanism is therefore likely to be very small under aqueous conditions, but cannot be ruled out. Calcium carbonate is much less soluble than the hydroxide, but the reaction: $$Ca-clay + 2NH_3 + H_2O + CO_2 \qquad (NH_4)_2 - clay + CaCO_3 \downarrow \qquad (3)$$ cannot have contributed significantly to NH_3 sorption. The quantity of CO_2 in the system was equivalent to less than 5 per cent of the CEC, and deliberately adding CO_2 (as CO_2 -saturated water) in amounts equivalent to 100 per cent of the CEC increased sorption by only about one third, in tests using Ca-saturated Bromyard and Speller clays. A substantial proportion of sorption on Na- and Ca-clays, and practically all sorption on NH₄-clays, apparently involves mechanisms independent of the exchangeable cation. The most likely mechanism is protonation of NH₃ at sites of ^{***5} cm3 supernatant solution steam distilled into HCl. ^{***5} cm2 supernatant solution added directly to HCl. ⁻ not measured, or inapplicable. FIG. 4. Sorption of aqueous NH3 on SiO2 gel. $[NH_3]_{eq}(mM)$ pH-dependent charge, such as the silanol hydroxyls at broken edges of aluminosilicate lattices mentioned by Jenny et al. (1945) and by many workers since. The ability of silanol groups to sorb NH₃ is demonstrated by the sorption isotherm obtained with silica gel (Fig. 4), for which sorption, and surface area to ethylene glycol (1290 m² g⁻¹), are roughly 5 times greater than for the clays studied. Because the clays contained a residue of organic matter, NH₃ may also have reacted with phenolic and carboxylic hydroxyls. Young (1964) found that the amount of NH₃ 'strongly sorbed' by soils was correlated both with clay content and organic carbon. However, organic matter in the materials we used would probably contain few labile groups and make only a minor contribution to sorption. Various workers (McVickar et al., 1966) have suggested that hydrogen bonding could contribute to NH_3 sorption on clays. Under our conditions, since NH_3 is already H-bonded to water molecules, these bonds must break when others are formed to the clay surface, which implies a negligible enthalpy change for the overall process. Sorption mechanisms with very small ΔH cannot contribute by more than about 1 per cent to overall sorption, as long as sites remain unoccupied where ΔH of sorption is at least 10 kJ/mol (assuming all sorption mechanisms have similar entropy). The heats of NH_3 sorption on Na- and Ca-clays (Fig. 5) are well in excess of this figure. Also, even in the absence of an aqueous phase, no evidence for H-bonding of NH_3 to the clay surface has been found (Russell, 1965; Ashworth, 1978). These observations suggest that a mechanism involving H-bonding is unlikely to contribute significantly to sorption from aqueous NH_3 . It is noteworthy that the different ΔH values obtained with Na- and Ca-saturated Batcombe clay are consistent with two different mechanisms of sorption from dilute aqueous NH₃. FIG. 5. Integral heats of sorption of NH3 on Batcombe soil: © Na-form, © Ca-form. Previously (Ashworth, 1973), differences between amounts of exchangeable mono- and divalent ions (such as those in Table 1) were ascribed to a preference for divalent ions on the part of exchange sites on organic matter (Addiscott, 1970). However, this explanation cannot wholly account for the extra Ca^{2+} ion extracted by NH₄ OAc from Batcombe soil clay. This indicates the presence of a Ca salt which could, through NH₃ co-ordination, make our estimate of A on Ca-saturated Batcombe clay erroneously high. The estimate of ΔH should, however, be little affected, since ΔH of co-ordination of Ca^{2+} ions should be insensitive to the nature of the counter-ion. Suspensions of all forms of all soil clays equilibrated with aqueous NH₃ were analysed for Al and Si after centrifuging. All gave similar results: very small amounts (<1 mg/l) of Al and Si were found, except that Si concentrations rose sharply with increasing [NH₃]_{eq} above 0.1 M, reaching 6 mg/l at [NH₃]_{eq} = 0.25 M. However, the set of determinations of A made for each clay at this value of [NH₃]_{eq}, though unreplicated, gave results in line with those obtained at lower concentrations, suggesting that clay mineral dispersion had little effect on our measurements. #### General conclusions In previous work (Ashworth, 1973) on dried, homoionic Batcombe soil, amounts of NH₃ gas sorbed followed the order Ca > NH₄ > Na-soil. The sodium The results described here, and the suggested interpretation, are much more relevant to practical agriculture than previous work in systems with no aqueous phase. However, results from both sets of conditions agree in showing that soils have a large adsorption capacity for NH₃ which is independent of the exchangeable cation. The importane of sorption mechanisms that involve exchangeable ions has perhaps become over emphasised as a result of related work on pure homoionic clays (Mortland et al., 1963: James and Harward, 1964; Russell, 1965; Mortland, 1968). The density of pH-dependent charge sites on a particular soil is more important for NH₃ sorption than its degree of Ca saturation. However, interaction of Ca²⁺ ions with NH₃ can be expected to be significant in sorption at the centre of injected bands, where NH₃ is concentrated. Also, at the periphery, some exchange of NH₄⁺ for Ca²⁺ ions can be expected, by means of Equation (3), because of CO₂ absorption from the soil atmosphere outside the band. This reaction cannot contribute significantly to NH₃ sorption taking place immediately on injection, as suggested by du Plessis and Kroontje (1966), because very little CO₂ is present in the volume of soil encountered by the injected NH₃. However, CO₂ absorption will assist afterwards in gradually bringing the alkaline soil solution in the injected band to a pH suitable for ammonium oxidising bacteria. ## Acknowledgements We thank O. Talibudeen, A. M. Posner and A. C. D. Newman for discussion, M. Raeside and M. Chipper for laboratory assistance, M. H. B. Hayes for access to the microcalorimeter at Birmingham University and V. Cosimini and B. Messer for analyses. #### REFERENCES - ADDISCOTT, T. M. 1970. A note on resolving soil cation exchange capacities into 'mineral' and 'organic' fractions. J. agric. Sci., Camb. 75, 365-7. - ASHWORTH, J. 1971. Rothamsted Experimental Station Annual Report (1971), p. 57. - ----. 1972. Rothamsted Experimental Station Annual Report (1972), pp. 46-7. - ——. 1973. Reactions of NH₃ with soil, I. Adsorption isotherms and calorimetric heats of adsorption on homoionic soil. J. Soil Sci. 24, 104-16. - ——. 1978. Reactions of NH₃ with soil, II. Sorption of NH₃ on English soils and on Wyoming bentonite. Ibid. 29, 195-207. - BJERRUM, J. 1941. Metal ammine formation in aqueous solution, pp. 137-51. Copenhagen: P. Haase & Son. - DEIST, J. 1966. Cation exchange equilibria and kinetics in soils and clay Minerals. Ph.D. thesis, London Univ. - HAYES, M. H. B., PICK, M. E. and TOMS, B. A. 1972. Application of microcalorimetry to the study of interactions between organic chemicals and soil constituents. Science Tools 19, 9-12. - JAMES, D. W. and HARWARD, M. E. 1964. Competition of NH₃ and H₂O for adsorption sites on clay minerals. Proc. Soil Sci. Soc. Am. 28, 636-40. - JENNY, H., AYERS, A. D. and HOSKING, J. A. 1945. Comparative behaviour of ammonia and ammonium salts in soils. Hilgardia 16, 429-57. - JOLLY, W. L. 1964. The inorganic chemistry of nitrogen, pp. 43-4. New York: Benjamin. - McVICKAR, M. H., MARTIN, W. P., MILES, I. E., and TUCKER, H. H. 1966. (eds.) Agricultural anhydrous ammonia. Chapters 9-12. Agricultural Ammonia Institute, American Society of Agronomy, Soil Science Society of America. CORPTION OF AQUEOUS AMMONIA MORTLAND, M. M. 168. Protonation of compounds at clay mineral surfaces. Trans. 9th inter. Congr. Soil Sci., Adelaide, 1, 691-9. ----, FRIPIAT, J. I., CHAUSSIDON, J. and UYTTERHOEVEN, J. 1963. Interaction between ammonia and the expanding lattices of montmorillonite and vermiculite. J. phys. Chem. 67, 248-58. and RAMAN, K. V. (1968) Surface acidity of smectites in relation to hydration, exchangeable cation and structure. Clays and Clay Minerals 16, 393-8. PLESSIS, M. C. F. du and KROONTJE. W. 1966. The effect of carbon dioxide on the chemisorption of ammonia by base-saturated clays. Proc. Soil Sci. Soc. 30, 693-6. RAWSON, R. A. G. 1969. A rapid method for determining the surface areas of alumino-silicates from the adsorption dynamics of ethylene glycol vapour. J. Soil Sci. 20, 325-35. RUSSELL, J. D. 1965. Infra-red study of the reactions of ammonia with montmorillonite and saponite. Trans. Faraday Soc. 61, 2284-94. YOUNG, J. L. 1964. Ammonia and ammonium reactions with some Pacific Northwest soils. Proc. Soil Sci. Soc. Am. 28, 339-45. (Received 20 May 1978)